Speed of flow of non-wetting droplets in capillaries of circular cross-section

Karol Makuch

Microfluidics and Complex Fluids Group

Institute of Physical Chemistry Polish Academy of Sciences

21.12.2016 IPPT PAN

Motivation

Compartmentalization: -chemical reactions -encapsulate and cultivate microorganisms

Goal

to understand speeds of flow of droplets in microfluidic channel

• non-wetting droplets long droplets oil water b

Goal: experiments on droplets and its theoretical explanation

Mobility of droplet:

velocity of droplet

average velocity of continuous phase

Experimental setup

The same droplet travels back and forward

Measurement procedure – first approach

 $U = \frac{L}{T}$

Procedure -droplets travel back and forward

-distance between detectors
-time of passage of droplet
between two detectors

-density of oil-tube diameter-volumetric flow rate

Factors which influence speed of droplet

- average speed of flow of oil
- length of droplet
- viscosity of the droplet
- viscosity of the continuous liquid
- interfacial tension
- presence/absence of surfactant (oil, droplet)
- gravity field

Dominant effects

water droplets in FC-40 oil tube diameter: d = 0.8 mm

Viscous and interfacial forces: $Ca = \frac{\mu_c V}{\sigma} \approx 0.001 \text{ for } V = 1\frac{\text{cm}}{s}$ Inertial and viscous effects: $Re = \frac{\rho_c dV}{\mu_c} \approx 3.6 \text{ for } V = 1\frac{\text{cm}}{s}$ Gravitational and interfacial effects: $Bo = \frac{\Delta \rho d^2}{\sigma} \approx 0.01$

Theoretical model: stationary Stokes equations

Governing parameters:

• Ratio of viscosities λ

$$=\frac{\mu_d}{\mu_c}$$

Capillary number

$$Ca = \frac{\mu_c V}{\sigma}$$

tube diameter

• Length of droplet l(numerical simulations: mobility does not change for l > 2d)

Lac, E. & Sherwood, J., JFM, 2009, 640, 27-54

Theoretical model: stationary Stokes equations

Theoretical model: important results for droplets in circular cross-section channel

Bretherton (1961) – inviscid droplet ($\lambda = 0$), low capillary number

(Bretherton, F., JFM, 1961, 10, 166-188)

$$\beta = 1 + 1.29(3Ca)^{\frac{2}{3}}$$
 $Ca = \frac{\mu_c V}{\sigma}$

Extension of Bretherton's approach for viscous droplets:

Between parallel plates:

Teletzke, G. F.; Davis, H. T. & Scriven, L. Revue de Physique Appliquee, 1988, 23, 989-1007 In channels of circular cross-sections:

Hodges, S.; Jensen, O. & Rallison, J., JFM, 2004, 501, 279-301

Numerical solution of ordinary (3rd order) differential equation leading to $\beta(\lambda, Ca)$

Our theoretical results

Consequent application of low *Ca* condition leads to scaling, and mobility of droplet ($\lambda = \frac{\mu_d}{\mu_c}$, $Ca = \frac{\mu_c V}{\sigma}$,) can be calculated as follows: 0.95 0.90 $c_{fit}(g) = t(0) + \frac{g + b_4 g^2 + (t(0)2^{2/3} - t(0))g^3}{b_1 + b_2 g + b_2 g^2 + g^3}$ 0.85 0.80 Film thickness: $t(0) = 0.643, \quad b_1 = 4.109, \quad b_2 = 8.906,$ 0.75 $b_3 = 10.144, \ b_4 = 3.575.$ $\frac{b}{r} = (3Ca)^{\frac{2}{3}}c\left(\lambda(3Ca)^{\frac{2}{3}}\right),$ 0.70 0.65

Our theoretical results

To observe the above changes with viscosity, relative error of measurement of mobility should be less than about 1/1000

How to achieve relative error 1/1000 in experiment?

-distance between detectors-time of passage of dropletbetween two detectors

-density of oil-tube diameter-volumetric flow rate

 $=\frac{L}{T}$

It is difficult to achieve high accuracy in this way...

How to achieve relative error 1/1000 in experiment?

Two features of our setup:

- time of passage T between two detectors (signal from detectors with frequency up to 5000Hz)
 (T ~ seconds)
- stability and proportionality of volumetric flow

 $V = \alpha V_{NE}$

Property of experimental setup (tube diameter, properties of pump/syringes) (droplet independent)

Measurements

For given droplet (water+glycerol+dye) in FC-40 oil (λ, σ) we set velocity on Nemesis pumps V_{NE} , and measure time of passage T

$$V_{NE}$$
 , $1/TV_{NE}$

Fit of theoretical curve

$$Ca = \frac{\mu_c \alpha V_{NE}}{\sigma}$$
$$\frac{b}{r} = (3Ca)^{\frac{2}{3}} c \left(\lambda (3Ca)^{\frac{2}{3}}\right)$$

First test of the theory:

 $\frac{L}{\alpha}$, λ , $\mu_c \alpha / \sigma$ as three independent fitting parameters

First test of the theory

Summary

- Theory: practical formula for mobility of long, non-wetting droplets
- Preliminary experimental verification (error of measurements < 1/1000)

Further goals:

- broader range of capillary numbers and viscosities
- can that be used to measure viscosity, surface tension? what accuracy?

In collaboration with Michał Horka, Jean Baptiste-Gorce and Piotr Garstecki